Condition Monitoring

industrial thermography

Developing and Implementing an Infrared Predictive Maintenance Program

Westar is currently evaluating the implementation of a new database and route collection system. This new component to the infrared program will allow for Web-based tracking and trending of all infrared projects and will greatly enhance the efficiency of our program. It will also allow for simultaneous imbedding, reporting, tracking, and trending of the ultrasonic technology being brought into the thermography program.

See More
ultrasonic testing

Ultrasonic Testing: Heeding the Screams of Sick Machines

Before bearings, valves and other mechanical parts fail, they usually scream for help. But their piercing wails usually fall on deaf ears because the sound frequencies are far too high for humans to hear. No wonder deteriorating components may go undetected until they break down completely. Now, however, a variety of tools using ultrasonic technology—ultrasound, as it is commonly known—are helping companies in a wide range of industries avoid wasteful replacements or costly breakdowns.

See More

How The Eyes (and IR camera) Can Be Misled

The IR camera is a great tool used in our everyday predictive maintenance endeavors, but it can play tricks on our eyes if we do not investigate beyond what we are observing. Things truly are not always as they seem, here’s an example:

See More

How to Use Condition Monitoring to Optimize Grease Lubrication

There are four primary components to precision grease lubrication for bearings: lubricant selection, application method, the volume of lubricant to be delivered, and the frequency with which it is applied. There are, of course, many different methods for specifying these values, and opinions can vary significantly as to which approach is best. Due to the variability of operating conditions and machine design, it can be very difficult to be truly precise without introducing the “condition-based” component to the formula.

See More

Implementing an IR Thermography Maintenance Program

If thermography is new in your plant, the first few inspection cycles may yield a large number of finds. Subsequent inspections should go more smoothly. After about three cycles, reorganize the routes so they are more efficient, and add new routes and equipment into the inspection cycle as necessary. The optimum frequency of inspection will be determined by the needs of the equipment assets. As they age, are heavily loaded or are poorly maintained, inspections may become more frequent.

See More
infrared thermography

Infrared Thermography

For a program to be effective it must be accepted by management as well as other maintenance personnel. Getting other maintenance people involved in Infrared Thermography is a good way of gaining acceptance not to mention the fact that, more people scanning equipment will find more problems, more quickly, resulting in payback more quickly for the plant. This paper discusses the approach which I am implementing with varying degrees of success at my client’s plant sites and which could be implemented in plants with existing IR imagers.

See More

Infrared Thermography and Distribution System Maintenance

Infrared thermography is the science of seeing heat. Thermal imagers
have the ability to produce a visual representation of thermal patterns as heating systems’ components are identified and recorded. Maintenance strategies are then planned and carried out before system breakdowns occur.

See More

In-Process Motor Testing Results Using Model Based Fault Detection Approach

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics (FDD) methods to provide both speed and reliability of motor quality testing. This paper presents the findings of a decade long research and development efforts in the field of experimental modeling technique and its practical applications for the fault detection purposes, first in the fields of aerospace and defense, and now in the context of highvolume electric motor manufacturing. Underlying this patented technology is a set of proprietary algorithms that enable precise tracking of the parameters pertaining to the physical structure of the motor.

See More

Join the discussion

Click here to join the Maintenance and Reliability Information Exchange, where readers and authors share articles, opinions, and more.

Get Weekly Maintenance Tips

delivered straight to your inbox